Aero-Engine Casing Modal Analysis & Vibration Assessment

Aero-Engine Casing Modal Analysis & Vibration Assessment

Project: Aero-Engine Casing Modal Analysis & Vibration Assessment

August 2023 · Aero-Engine Technology R&D Center

Conducted experimental modal analysis (EMA) on a turbofan engine casing to:

    1. Characterize structural dynamic properties under simulated operational loads

    2. Validate finite element models (FEM) for critical vibration modes

    3. Identify potential resonance risks with rotor excitation frequencies

Test Setup & Methodology

1. Test Article

Component: Intermediate compressor casing (Nickel-based alloy)

Key Features:

  • External mounts: Fuel/oil pumps, gearbox, generators

  • Internal attachments: Stator vanes, combustor dome

  • Design constraints: <0.1mm radial deformation at 15,000RPM

2. Instrumentation

DE-928U High-Performance DAQ System (16-ch)

  • Frequency range: DC - 300kHz

  • Dynamic range: 120dB (24-bit resolution)

Excitation & Measurement:

  • Impact hammer testing (10 locations, 5 repeats)

  • Triaxial accelerometers (0.5-10kHz, 10mV/g)

    • Laser Doppler vibrometry (non-contact validation)

3. Test Modes

Test Modes
Configuration Boundary Conditions
Free-Free (suspended) Elastic cord isolation (fn < 2Hz)
Fixed-Base Bolted to seismic mass (simulating engine mounts)
Aero-Engine Casing Modal Analysis & Vibration Assessment

Key Results

1. Modal Parameters

modal parameters
Mode Frequency [Hz] Damping Ratio Deformation Pattern
1 287 0.8% Ovalization (2-nodal diameter)
2 512 1.2% 3-lobe distortion
3 894 2.1% Axial bending + torsion

2. FEM Correlation

  • MAC (Modal Assurance Criterion): >0.92 for first 6 modes

  • Stiffness deviation: <7% in circumferential direction

3. Critical Findings

  • Risk zone: 512Hz mode coincides with:

    • 3×N2 rotor speed (at 10,240RPM)

    • Gearmesh frequency of accessory drive

  • Mitigation: Proposed stiffening ribs to shift mode to 550Hz

Engineering Impact

Design Validation

  • Confirmed 20% margin to blade-passing frequencies (6k-8kHz range)

  • Verified mounting stiffness meets MIL-E-5007D requirements

Process Improvements

  • Implemented laser peening to increase damping ratio by 40%

  • Optimized bolt preload distribution to reduce mode splitting

Standardization

  • Established casing modal test procedure per:

    • ISO 7626-5 (impact testing)

    • ASME PTC 19.2 (transducer calibration)

Technical Terms

  • Nodal diameter: Circumferential mode shape feature

  • MAC: Quantitative mode shape correlation metric

  • Blade-passing frequency: Rotor blades × RPM excitation

This test enabled first-time-right casing design for the next-gen 20,000 lbf turbofan, reducing development cycles by 6 months.

Previous
Previous

Aero-Engine High-Pressure Rotor Vibration & Stability Test

Next
Next

SUAV Operational Vibration Testing & Airframe Analysis