SUAV Operational Vibration Testing & Airframe Analysis

SUAV Operational Vibration Testing & Airframe Analysis

Project: SUAV Operational Vibration Testing & Airframe Analysis

July 2023 · China Aerospace Science and Technology Corporation

A comprehensive operational vibration survey was conducted on a MALE-class UAV at an aviation test center, utilizing ruggedized data acquisition systems to characterize airframe dynamics across 20 flight regimes.

Test Configuration

1. Instrumentation

SUAV Operational Vibration Testing & Airframe Analysis

4 × RE-846U Rugged DAQ Systems (deployed in avionics bay)

  • Operating temperature: -40°C to +70°C

  • Shock resistance: 50g, 11ms half-sine

35 triaxial IEPE accelerometers (100mV/g sensitivity)

Locations:

  • Wing roots (6 nodes, spanwise distribution)

  • Empennage (vertical & horizontal stabilizers)

  • Payload bay (structural interface points)

  • Control surface actuators (servo mounting bases)


2. Test Matrix

test matrix
Flight Phase Key Parameters Duration
Taxi 0.5-5Hz ground-induced vibration 120s
Takeoff (100% throttle) 10-500Hz engine harmonics analysis 45s
Climb (15° pitch) Buffet boundary identification 180s
Cruise (FL200) Aeroelastic mode excitation 300s

Data Acquisition & Processing

Sampling:

  • Baseband: 2kHz/channel (0-1kHz analysis BW)

  • Zoom FFT: 25.6kHz for gearmesh frequency monitoring

Synchronization:

  • PTPv2 time synchronization (±50μs inter-system alignment)

  • Flight parameter triggers (via ARINC 429 bus)

Analysis Methods:

  • PSD (Hanning window, 50% overlap)

  • Order tracking (shaft speed referenced)

  • Transmissibility analysis (control surface to airframe)


Key Findings

1. Structural Dynamics

Discovered 37Hz wing bending mode coinciding with:

  • 2nd engine harmonic (potential flutter risk)

  • Mitigated via stiffener reinforcement (8% mass penalty)

2. Propulsion-Induced Vibration

Identified 540Hz gearmesh resonance exceeding:

  • MIL-STD-810G Category 14 limits

  • Resolved with isolator redesign (attenuation >12dB)

3. Control System Interaction

Measured servo-induced vibrations at:

  • 22Hz (aileron actuation frequency)

  • 88Hz (PWM-related harmonics)


Engineering Outcomes

Design Changes Implemented

  • Added constrained layer damping to payload bay (vibration reduction: 35% @ 50-200Hz)

  • Optimized servo update rate from 400Hz to 450Hz to avoid structural modes

New Maintenance Protocols

Established vibration-based wear indicators for:

  • Engine mounts (alert threshold: 4.2g RMS @ 1/rev)

  • Control hinges (3σ exceedance monitoring)

Certification Support

Provided compliance evidence for:

  • DO-160G Section 8 (vibration)

  • ASTM F3200 UAV airworthiness standards

Technical Terms

  • MALE: Medium Altitude Long Endurance

  • IEPE: Integrated Electronics Piezo-Electric

  • PSD: Power Spectral Density

This test established baseline vibration signatures for the UAV fleet, enabling condition-based maintenance with 92% fault detection accuracy.

Previous
Previous

Aero-Engine Casing Modal Analysis & Vibration Assessment

Next
Next

Strain Testing Report for Next-Generation Rocket Thruster