UAV Modal Testing for Vibration Analysis & Structural Optimization

UAV modal testing

Project title: UAV Modal Testing for Vibration Analysis & Structural Optimization

A new reconnaissance-strike UAV exhibited abnormal vibrations during high-speed dive maneuvers, causing blurring in its electro-optical pod imagery. A research institute utilized the DE-944 dynamic testing system to conduct modal testing on critical components, identifying vibration sources and guiding structural optimization.

1. Innovative Test System Configuration

Multi-Excitation Coordination System:

  •     Main Exciter: TEN-M200 (200N) for global modal excitation

  •     Auxiliary Exciter: Miniature electromagnetic (20N) for local structural analysis

  •     DE-944 System Integration: Achieved multi-channel phase synchronization (<0.1° error)

    Intelligent Sensor Network:

  •     Deployed 32 triaxial accelerometers (including 4 high-temperature sensors near the engine bay)

  •     Utilized wireless sensing nodes for rotating components (e.g., fuel pump)

2. Key Technological Breakthroughs

(1) Composite Excitation Technology

    Developed "Stepped Sweep" algorithm:

  •     Baseline sweep: 0.1-500Hz @ 2Hz/s

  •     Critical frequency band: 80-150Hz @ 0.2Hz/s (engine operating range)

  •     Random excitation overlay: Enhanced nonlinear feature identification

(2) Environmental Noise Suppression

     Applied adaptive filtering:

  •     Real-time separation of engine background noise (SNR improved to 45dB)

  •     Developed deep learning-based anomaly detection (98.7% accuracy)

3. Engineering Issue Diagnosis

Identified Critical Abnormal Modes:

Identified Critical Abnormal Modes
Location Frequency Damping Ratio Root Cause
Right Wing Pylon 118Hz 0.3% Insufficient actuator mounting stiffness
EO Pod Bracket 87Hz 1.2% Composite material delamination

Vibration Transmission Path Analysis:

Vibration transmission path analysis

4. Structural Optimization Solutions

   (1) Dynamic Performance Improvements

  • Pylon Stiffness Enhancement: Added titanium alloy bushings (40% stiffness increase)

  • EO Pod Vibration Isolation: Installed active dampers (90% vibration reduction)

   (2) Process Improvements

  • Implemented laser-ultrasonic inspection for composite curing quality

  • Optimized bolt fastening process (±5% preload control accuracy)

5. Validation Results

Flight Test Data Comparison:

Flight test data comparison
Metric Pre-Optimization Post-Optimization
Image Stability 2.3 pixels 0.5 pixels
Structural Fatigue Life 800h 2500h
Maximum Maneuver G-Load 5.2G 6.8G

Technology Extension Value

  • Established "UAV Modal Testing Standards" (Q/AVIC-2023)

  • Applied to new high-speed UAV development, cutting testing time by 40%

  • Developed real-time vibration monitoring system for in-flight early warning

Previous
Previous

Launch Pad No.2 Structural Health Monitoring at Jiuquan

Next
Next

C919 Aircraft Structural Strength Testing