Supersonic Model Aircraft Vibration & Strain Testing

Supersonic Model Aircraft Vibration & Strain Testing

Project: Supersonic Model Aircraft Vibration & Strain Testing

May 2023 – The Chinese Academy of Sciences (CAS) conducted high-speed structural dynamics testing on a 1:10 scale supersonic model (Mach 1.0) at an electromagnetic propulsion test facility, focusing on vibration and airframe strain during launch and flight.


Test Setup & Challenges

1. Miniaturized Instrumentation

RU-846 Rugged Data Recorder (embedded in fuselage)

  • Dimensions: 80×60×40mm

  • Weight: <300g (including shock mount)

  • Operating G-load: Survived 100g launch acceleration

2. Sensor Configuration

Triaxial MEMS accelerometers (±2000g range, 10kHz bandwidth)

  • Nose, wing roots, vertical stabilizer

Supersonic Model Aircraft Vibration & Strain Testing

Micro strain gauges (2mm grid, 350Ω)

  • Critical joints: wing-fuselage, control surface hinges

3. Data Acquisition

Offline recording (no telemetry due to EM interference)

Sample rates:

  • Acceleration: 50 kSPS (16-bit)

  • Strain: 10 kSPS (24-bit)

Automatic triggering by launch G-force >5g


Key Test Parameters

Launch Phase (0–0.5s)

  • Peak acceleration: 82g (validated railgun design)

  • Structural ringing: 1.2kHz damped oscillation

Transonic Transition (Mach 0.8–1.2)

  • Detected shockwave-induced vibrations at 350Hz

  • Measured wing bending-twist coupling (Δε/α = 0.8με/°)

Supersonic Cruise

  • Aeroelastic stability: Confirmed absence of flutter below Mach 1.4


Technical Breakthroughs

1. Extreme Environment Operation

Withstood:

  • Instantaneous thermal rise (ΔT > 150°C at leading edges)

  • Aerodynamic noise >160dB

2. Data Recovery

  • Crash-proof design: 100% data retrieval after model impact

  • Time-sync accuracy: ±1μs via embedded atomic clock

3. Post-Processing

Wavelet analysis identified:

  • Micro-delaminations in composite skins (from strain kurtosis changes)

  • Control surface buzz at Mach 1.1


Outcomes & Impact

Validated computational models for:

  • Store separation dynamics (within 5% of CFD predictions)

  • Sonic boom propagation effects on airframe

Design modifications:

  • Increased wing spar thickness by 15% at Station 3

  • Optimized canard vortex generators to reduce buffet



Key Terms:

  • Store separation: Simulated payload release testing

  • Aeroelastic stability: Resistance to flutter/divergence

  • Wavelet analysis: Time-frequency domain signal processing



This test established new protocols for micro-instrumented hypersonics research, with the RU-846 system now adopted as standard equipment for CAS’s Mach 5+ test vehicles.

Previous
Previous

Strain Testing Report for Next-Generation Rocket Thruster

Next
Next

Engine Speed and Oil Pressure Testing Explained